21년도 인공지능 학습용 데이터 구축 가이드라인

〈 정밀농업 농기계 자율주행 데이터 〉

※ 지정공모 과제의 경우 소분류 단계인 "세부 데이터명" 건별로 작성하여 주시기 바랍니다. 단 세부 데이터셋이 공통적이고 복수인 경우 부제에 제목 명기 가능.

	사업 총괄	㈜대동	
데이터 설계 데이터 수집 및 정제 데이터 가공 인공지능 데이터 구축	㈜대동, ㈜테스트웍스, 유엔젤(주)		
	㈜대동, 한국자동차연구원, 국립농업과학원		
이곳지는 데이터 구추	데이터 가공	㈜테스트웍스	
1000 TOTAL	데이터 검수	㈜인터마인즈	
	크라우드 소싱	㈜테스트웍스	
	저작도구 개발	㈜테스트웍스	
	AI모델 개발	유엔젤(주)	
가이드라인 작성	㈜대동	유정화	
가에드나면 작용	㈜테스트웍스	서길원	
가이드라인 버전	ver 1.1 ('22. 1. 25)		

목 차

1. 데이터 명세 정보1
1.1 데이터 정보 요약1
1.2 데이터 포맷1
1.3 어노테이션 포맷2
1.4 데이터 구성
1.5 데이터 통계 4
1.6 원시데이터 특성5
1.7 기타 정보5
2. 데이터 구축 가이드6
2.1 데이터 구축 개요6
2.2 문제정의6
2.3 수집·정제6
2.4 어노테이션/라벨링7
2.5 검수 10
2.6 활용 10

1. 데이터 명세 정보

1.1 데이터 정보 요약

데이터 이름	정밀농업 농기계 자율주행 데이터			
활용 분야	농기계를 활용 ³ 및 경작기술개념	하여 논, 밭, 과수원 등 다양한 농지에서 영상기반으로 자율주행 발에 활용		
데이터 요약	1	상태와 지형, 작물 등 주변 환경조건을 인식해 최적의 경로를 및 경작지 내 자율주행을 위한 인공지능 학습용 데이터셋		
데이터 출처	자체 수집			
	배포버전	ver 1.0 ('22. 1. 19)		
데이터 이력	개정이력	신규		
	작성자/ 배포자	테스트웍스 서길원/		

1.2 데이터 포맷

원천데이터	RGB	NIR	LiDAR
가공 예시			

1.3 어노테이션 포맷

- 이미지 데이터 유형의 라벨링 기능 및 어노테이션 방식
- 본 과제를 위한 데이터 어노테이션은 원시 데이터의 형태에 따라 2D, 3D 바운딩박스 (Bounding Box)와 폴리곤 세그멘테이션(Polygon-Segmentation) 3가지 방법을 이용
- 객체 인식 정확도 향상을 위해 2D 바운딩박스(사각형), 3D 바운딩 박스(큐브형)로 가공
- 주행 가능, 불가능 영역을 구분하기 위해 폴리곤 세그멘테이션(픽셀 점)을 이용하여 가공

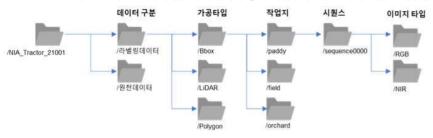
순서	라벨링 기능	원시데이터	어노테이션 방식
1	1 객체 인식(Object Recognition)	2D RGB, NIR	- 2D 바운딩 박스(사각형)
'		3D LiDAR	- 3D 바운딩 박스(큐브형)
2	영역 구분(Segmentation)	2D RGB, NIR	- 폴리곤(픽셀 점)

○ 라벨링 어노테이션 구조

- 2D 바운딩박스 어노테이션 구조

=	구분	항목명	타입	필수여부	설명	범위	비고
	1	license	array	N	저작권		
	2	info[]	array	Y	일반 정보		
	2-1	info[].contributor	string	Y	기여자		
	2-2	info[].date_created	string	Υ	데이터 생성일		
	2-3	info[].description	string	Y	데이터 설명		
	2-4	info[].url	string	N	이미지 주소		
	2-5	info[].version	number	N	가공 버전		
	2-6	info[].year	number	N	가공 년도		
	3	images[]	array	Y	이미지 정보		
	3-1	images[].id	number	Υ	이미지 고유 ID		
	3-2	images[].file_name	string	Y	이미지 파일명		
	3-3	images[].width	number	Y	이미지 너비	0~1920	1920
	3-4	images[].height	number	Y	이미지 높이	0~1080	1080
	3-5	images[].latitude	number	N	위도		32.12345
	3-6	images[].longitude	number	N	경도		127.1235 5
	3-7	images[].time	string	Y	촬영시간		hh:mm:ss
	3-8	images[].heading	number	N	IMU Heading	0~360	
	3-9	images[].pitch	number	N	IMU Pitch	-999~ 999	
	3-10	images[].roll	number	N	IMU Roll	-999~ 999	
	4	categories[]	array	Y	객체 정보		
	4-1	categories[].id	number	Y	객체 고유 ID		
	4-2	categories[].name	enum	Y	객체 이름		
	4-3	categories[].supercategory	string	N	객체 상위 카테고리		
	5	annotations[]	array	Υ	어노테이션 정보		
	5-1	annotations[].id	number	Y	고유 ID		
	5-2	annotations[].image_id	string	Y	이미지 고유 ID		
	5-3	annotations[].category_id	string	Υ	객체 고유 ID		
	5-4	annotations[].bbox	array	Υ	어노테이션 좌표		[xtl, ytl, width, height]
	5-5	annotations[]iscrowd	number	N	객체 군집 유무		
	5-6	annotations[].area	number	Y	객체 면적		
	5-7	annotations[].size	enum	Y	객체 크기 분류	"S", "M","L"	"S", "M","L"
	5-8	annotations[].occluded	number	Υ	가림 및 잘림 여부		0, 1

- 3D 바운딩박스 어노테이션 구조


구분	항목명	타입	필수여부	설명	범위	비고
1	mode	string	N	가공모드		
2	images[]	array	Y	이미지 정보		
2-1	images[].image_id	number	Y	이미지 고유 ID		
2-2	images[].name	string	Y	이미지 파일명		
2-3	images[].latitude	number	N	위도		32.12345
2-4	images[].longitude	number	N	경도		127.12355
2-5	images[].time	string	Y	촬영시간		hh:mm:ss
2-6	images[].heading	number	N	IMU heading	0~360	nnn
2-7	images[].pitch	number	N	IMU pitch	-999~ 999	nnn
2-8	images[].roll	number	N	IMU roll	-999~ 999	nnn
2-9	images[].objects[]	array	Y	객체 정보		
2-9-1	images[].objects[].position	number	Y	라벨링 데이터 원점	0~999	x, y, z
2-9-2	images[].objects[].scale	number	Y	객체 크기	0~999	x, y, z
2-9-3	images[].objects[].rotation	number	Y	객체 회전각	0~999	x, y, z
2-9-4	images[].objects[].area	number	Y	객체 면적		
2-9-5	images[].objects[].size	enum	Υ	객체 크기 분포	"S", "M","L"	"S", "M","L"
2-9-6	images[].objects[].obj_type	enum	Υ	객체 명		트랙터
2-9-7	images[].objects[].obj_id	number	N	객체 분류 코드		null

- 폴리곤 어노테이션 구조

구분	항목명	타입	필수여부	설명	범위	비고
1	mode	string	N	가공모드		
2	images[]	array	Y	이미지 정보		
2-1	images[].image_id	numbe r	Υ	이미지 고유 ID		
2-2	images[].name	string	Y	이미지 파일명		
2-3	images[].width	string	Y	이미지 너비	0~1920	1920
2-4	images[].height	string	Y	이미지 높이	0~1080	1080
2-5	images[].latitude	numbe r	N	위도		32.12345
2-6	images[].longitude	numbe r	N	경도		127.12355
2-7	images[].time	string	Υ	촬영시간		hh:mm:ss
2-8	images[].heading	numbe r	N	IMU heading	0~360	nnn
2-9	images[].pitch	numbe r	N	IMU pitch	-999~ 999	nnn
2-10	images[].roll	numbe r	N	IMU roll	-999~ 999	nnn
2-11	images[].objects[]	array	Y	객체 정보		
2-11-1	images[].objects[].label	enum	Y	객체 명		농로
2-11-2	images[].objects[].type	string	Y	가공 타입		폴리곤
2-11-3	images[].objects[].positio n[]	array	Υ	어노테이션 좌표		[x1,y1,x2,y 2xn,yn]
2-11-4	images[].objects[].area	numbe r	Y	객체 면적		
2-11-5	images[].objects[].size	enum	Y	객체 크기 분포	"S", "M","L"	"S", "M","L"
2-12	images[].occluded	numbe r	Υ	가림 및 잘림 여부		0: 기본 1: 가림
2-13	images[].z_order	numbe r	N	객체 원근 순서		
2-14	images[].attributes[]	array	N	라벨 속성		

1.4 데이터 구성

- 데이터셋 폴더 구조 정의
- 최상위 폴더는 과제 수행 중에는 데이터 구축 기업의 NAS 운영 정책을 따르고, 품질 검수 기간 에는 검수 기관의 지침을 따르며, 사업 종료 후 데이터 공개시에는 AI HUB 운영 정책을 따름
- 최상위 폴더 바로 아래에는 원천데이터, 라벨링데이터로 폴더를 분류함

<정밀농업 농기계 자율주행 데이터셋 폴더 구조>

- 파일 명명법
- 원천 데이터, 정제 데이터, 라벨링 데이터의 파일명은 고객사, 프로젝트명, 프로젝트 코드, 주객체 ID, 부객체 ID, 데이터 파일번호 정보를 포함함
- 각 정보는 " " 로 구분 · 모든 파일명은 영문 또는 숫자로 표기
- 파일명에 underscore " "을 제외한 특수문자나 white space는 제외

구분	과제명	촬영장소	장착위치	촬영지역	시간	조도	날씨	파일순서
범위	NIA_AgricultureAD	field paddy orchard	top middle bottom	광역 지자체 단위	YYMMDDhhmm	day night	sunny rainy	000000 ~ 999999
예시	NIA_AgricultureAD	field	top	gyeongsangnamdo	2107121741	day	sunny	002275
파일 명	과제명_place_position_촬영지역_time_daylight_weather_sequence NIA_AgricultureAD_field_top_Gyeongsangnamdo_2107121741_day_sunny_002275							

<가공 데이터 파일 명명 규칙>

1.5 데이터 통계

1.5.1 데이터 구축 규모

데이터 종류	가공 방식	원천데이터 및 라벨 형식	결과물 규모
RGB	Box Polygon	jpg / json	266,905장
NIR	Box Polygon	jpg / json	253,500장
LiDAR	Cuboid	pcd / json	80,311장
	총계		600,716장

1.5.2 데이터 분포

ㅇ 라벨링 유형별 데이터셋 통계

라벨링 유형	이미지 종류	라벨링 수량(장)	총 객체 수(개)	평균 이미지 당 객체(개)
Dahman	RGB	134,554	603,557	4.48
Polygon	NIR	121,287	808,194	6.66
Вох	RGB	132,351	701,347	5.29
БОХ	NIR	132,213	681,017	5.15
Cuboid LiDAR		80,311	211,724	2.63
합계		600,716	3,005,839	5.00

ㅇ 클래스별 객체 다양성 통계

클래스	객체 명	라벨 명	라벨링 방식	구분	수량(개)	비율
논	경운전	paddy_before_dri	polygon	구행가능영역	88,886	2.96%
		ving paddy_after_drivi	. ,3		,	
논	경운후	ng	polygon	주행가능영역	157,488	5.24%
논	물논	paddy_water	polygon	주행가능영역	14,245	0.47%
논	논두렁	paddy_edge	polygon	주행불가능영역	111,331	3.70%
논	작물(벼)	paddy_rice	polygon	주행불가능영역	289,971	9.65%
밭	고랑	field_furrow	polygon	주행가능영역	75,688	2.52%
밭	두둑	field_levee	polygon	주행불가능영역	328,475	10.93%
밭	작물(밭)	field_corps	polygon	주행불가능영역	9,819	0.33%
과수원	농로	orchard_road	polygon	주행불가능영역	12,501	0.42%
과수원	과수	orchard_tree	polygon	주행불가능영역	19,833	0.66%
공통	농로	common_road	polygon	주행가능영역	205,188	6.83%
공통	베일	common vail	box	정적위험개체	629,264	22.28%
00	메ㄹ	Common_van	cuboid	0 H H H / I / I	40,363	
공통	차량	common vehicle	box	- 동적위험개체	59,053	2.15%
00	^1 O	Common_venicle	cuboid		5,471	2.1370
공통	농기계	common_tractor	box	- 동적위험개체	43,793	1.89%
0.0	0,1,11	common_tractor	cuboid	07110/11/11	13,164	1.0370
공통	돌	common_rocks	box	정적위험개체 정적위험개체	29,294	1.17%
		COMMINION_TOCKS	cuboid	" "	6,001	1.17 /0
공통	나무	common_tree	polygon	주행불가능영역	98,326	3.57%
공통	사람	common_person	box	- 동적위험개체	295,307	12.65%
00	710	common_person	cuboid	07110/11/11	84,782	12.03/0
공통	전봇대	common_pole	box	정적위험개체	316,657	12.60%
00	cuboid 8기계			61,943	12.0070	
		합계			3,005,839	100%

1.6 원시데이터 특성

1.6.1 대상분류

- 대상분류: 모든 수집 대상객체 "실제"

1.6.2 제약조건

- 원시데이터 수집조건: 일부 제약있음 (semi-constrained)

순번	클래스	객체명	대상분류 (실제/시뮬레이션/복합)	제약 <mark>조건</mark> (제 <mark>약</mark> 없음/ 일부제약있음/ 제약있음)	제약조건 설명
1	논	경운전	실제	제약 없음	실작업 조견 논 촬영
2	논	경운후	실제	제약 없음	실작업 상태에서 논 촬영
3	논	물논	실제	제약 없음	실작업 조건 논 촬영
4	논	논두렁	실제	제약 없음	실작업 조건 논 촬영
5	논	작물(벼)	실제	제약 없음	실제농로주행 조건 촬영
6	밭	고랑	실제	제약 없음	실제농로주행 조건 촬영
7	받	두둑	실제	제약 없음	실제농로주행 조건 촬영
8	받	작물(밭)	실제	제약 없음	실제농로주행 조건 촬영
9	과수원	농로	실제	제약 없음	실제농로주행 조건 촬영
10	과수원	과수	실제	제약 없음	실제농로주행 조건 촬영
11	공통	농로	실제	제약 없음	실제농로주행 조건 촬영
12	공통	베일	실제	제약 없음	실제농로주행 조건 촬영
13	공통	차량	실제	일부 제약있음	실제농로주행 조건 촬영, 일부 시나리오 차량 임의배치
14	공통	농기계	실제	일부 제약있음	실작업 조건 촬영, 일부 시나리오 농기계 임의배치
15	공통	돌	실제	일부 제약있음	실작업 조건 촬영, 일부 시나리오 돌 임의배치
16	공통	나무	실제	제약 없음	실제농로주행 조건 촬영
17	공통	사람	실제	일부 제약있음	실제농로주행 조건 촬영, 일부 시나리오 사람 임의배치
18	공통	전봇대	실제	제약 없음	실제농로주행 조건 촬영

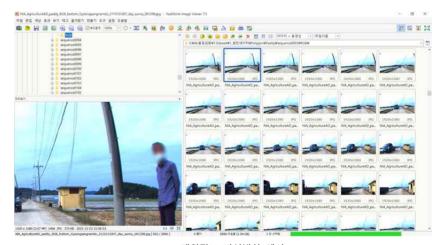
<객체별 대상분류 및 제약조건 표>

1.6.3 속성

		프레임별	초당		파일
수집센서	해상도	사이즈	프레임수	데이터 필드	파 _르 형식
		[KB]	[fps]		ଔଷ
LiDAR	LiDAR mode = "1024x10", 32ch Width = 1024 Height = 32	1,280	2~4	-	*.pcd
Camera [RGB]	FHD [1920x1080]	125	2~4	-	*.jpg
Camera [NIR]	FHD [1920x1080]	85	2~4	-	*.jpg
GPS	-	0.05	2~4	timestamp, Longitude(deg), Latitude(deg), Time(UTC+), Heading, Pitch, Roll	*.CSV
IVN	-	0.025	2~4	timestamp, HCU_Implement_up_down_ImplementPosition, HCU_Implement_up_down_ImplementUP, HCU_Implement_up_down_ImplementDown, ECU_VehicleSpeed_WheelBasedVehicleSpeed, PowerShift_ShuttleLever_State_ShuttleLever_Neutura IState, PowerShift_ShuttleLever_State_ShuttleLever_FRState	*.CSV

1.7 기타정보

1.7.1 포괄성


- 정밀농업 농기계 자율주행 데이터셋은 농업 필지를 대상으로 촬영하였고 대상필지는 하기와 같음. 데이터셋의 지역범위 메타데이터는 도(경상남도, 전라남도등) 단위로 표시함.

NO	지역	논, 밭 주소	필지면적 (평)	환경
1	경남	대동 연구소 1	2,000	논
2	경남	대동 연구소 2	1,000	논
3	경남	창녕군 대지면 본초리	920	논
4	전남	광양시 광양읍 세풍리	900	논
5	전남	순천시 해룡면 신대리	800	논
6	전남	순천시 황전면 수평리	900	논
7	전북	군산시 대야면 복교리	1,200	밭
8	전북	전북 전주시 덕진구 원동	3,000	과수원
9	전북	전북 장수군 계북면 느랏웃담길	1,000	과수원
10	전북	전북 완주군 이서면 농생명로	4,000	과수원
11	충남	공주시 의당면 율정리	1,000	논

<촬영 대상 필지>

1.7.2 독립성

- 원시데이터는 민감정보(사람얼굴, 자동차번호판)를 포함하고 있으며, 정제 단계에서 비식별화 도 구를 이용하여 비식별화 처리

<개인정보 비식별화 예시>

- 의도치 않은 민감정보 노출에 대비하기 위해 촬영된 사람, 필지 대상으로 초상권 및 개인정보이 용 동의서를 수집

1.7.3 유의사항

2. 데이터 구축 가이드

2.1 데이터 구축 개요

- (1) 구축 배경
- ○전 세계적으로 기계학습 및 딥러닝 등의 인공지능과 그 응용기술의 비약적으로 발전함에 따라 정부는 「데이터·AI경제 활성화 계획(2019.1.16.)」을 통해 4차 산업 혁명의 성공이 고도의 인공지 등 기술 확보 및 데이터와 인공지능 간 유기적인 융합에 달려 있다고 선언
- ○본격적인 AI와 데이터 시대를 맞아 TTA는 과기정통부와 한국정보화진흥원의 지원을 통해 인공 지능 데이터 구축지침 표준화 및 품질검증에 앞장
- 「지능정보산업인프라조성사업」의 2019년도 인공지능 학습 데이터 데이터셋 구축
- 코로나19 사태 이후 경기회복을 위한 정부 정책 수립 및 시행
- 경기 회복을 위한 정책 방안 주문(2020.4, 5차 비상경제회의)
- 코로나19 사태 이후 경기회복을 위한 3대 프로젝트와 이에 맞춘 10대 중점추진과제 발표 (2020.5)
- DNA(Data, Network, AI) 강화와 양질의 일자리 창출을 포함한 국가 프로젝트인 "한국판 뉴딜 종합계획"확정·발표(2020.7)

(2) 구축 필요성

- 농촌 인구감소 및 고령화 문제로 무인 자동화 농기계 요구 및 필요성 증대됨
- 기존의 농기계 자율주행 기술은 차량 GPS 위치인식 기반으로 정해진 경로를 추종하는 기술 수준임.
- 자율주행 농기계에 사람 및 장애물을 인식하여 정지, 회피등의 동작을 수행하는 안전제어기 능을 추가하고 저가의 양산성있는 기술 개발을 위해서는 2D RGB 및 LiDAR 영상데이터 기반 의 영상인식 자율주행 기술 개발 필요.
- 4차 산업혁명으로 인한 빅데이터, 머신러닝, 딥러닝을 아우르는 인공지능(Artificial Intelligence) 기술의 발달로 AI 영상데이터 분석 기반의 농기계 자율주행 기술 개발 가능.

2.2 문제정의

2.2.1 임무 정의

- (1) 추진 목적 요약
- 정형화된 정밀농업 농기계 자율주행 이미지 확보 및 AI 서비스 모델 개발
- 4차 산업혁명과 5G 시대를 맞이하여 부족한 농촌인력 대체와 노지상태 핵심 주요 작물에 대한 농업자동화를 이루기 위한 정밀농업 농기계의 농업 자율주행 인공지능 데이터 구축
- (2) 데이터의 정합성/다양성
- 농기계의 자율주행은 크게 농로와 경작지 내 주행으로 구분되며, 경작지의 경계, 고랑 및 안전 우행을 위한 위험물 인식이 중요
- 위험물은 정지 객체와 사람을 포함한 이동 객체에 대한 고려
- 객체 분석시 객체의 크기도 고려하여 다양성 확보
- 논, 밭, 과수원 등 다양한 경작지를 고려하여야 하며, 트랙터의 높이, 주야간별 다양한 컨텐츠
- (3) AI 학습모델 성능 향상을 위한 데이터 모델 후보군을 테스트하기 위해, 훈련 데이터셋/검증

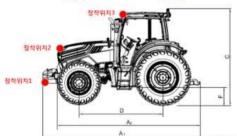
데이터셋/시험 데이터셋을 분류

- 모델 후보에 대하여 AI 학습 모델을 개발하고 테스트 셋을 통한 간이 테스트를 통해 최적의 모델 성정
- 높이 인식을 위해 RGB, NIR, LiDAR Data의 Fusion 기법을 적용하여 원 데이터 이외에 Modified Image Data 이용
- 따라서, 트랙터의 각 높이(3종)별 RGB, NIR, LiDAR Data의 컨텐츠 Set이 필요함

2.2.2 데이터 구축 유의사항

- (1) 이미지 데이터 정제시 고려사항
- 보안 관련 사항
 - RGB/NIR 카메라를 통해 획득된 개인정보 비식별화 이전의 불특정 다수의 사람 얼굴 및 자동차 번호판 데이터를 다루는 모든 인력은 반드시 보안서약서를 필수로 작성
 - 영상으로부터 이미지 추출 및 비식별화까지의 업무는 가능한 참여기업 소속의 직접 고용인 력이 당당
 - 정제 업무가 종료된 후 개인정보 비식별화가 진행되지 않은 데이터는 전량 삭제조치하며 정제 업무에 참여한 작업자의 PC와 NAS 서버를 반드시 과제 실무 담당자 이상급의 인력 이 검사
- 데이터 다양성 확보
 - 영상으로부터 프레임 이미지 데이터 정제 단계에서 다양성 확보를 위해 데이터들을 반드시 주관기관과 참여기업들간에 혐의하여 일정 수량 또는 비율을 반영할 수 있도록 함
 - 또한 데이터 구축 계획서 작성 전, 실제 카메라 및 라이다영상 데이터 샘플을 분석
- 기타 : 이미지 데이터 중복 관련
 - 이미지 정제시 카메라 정보, 위치, 날짜, 시간 등의 메타 데이터를 통해 중복이 없음을 확인
 - 육안 검사를 통해 작업지와 위험 객체의 유사이미지를 확인하여 불필요한 데이터 정제
- 법적 권리 동의서 및 계약서
 - 법리적 검토를 완료한 동의서 및 계약서를 활용
 - 개인정보 동의서, 개인정보처리위탁계약서, 저작재산권 이용허락 계약서, 초상이용 동의서 활용

2.3 수집·정제


2.3.1 원시데이터 선정

순서	구축 단계	항목 설명	파일 설명	포맷	비고
1			2D RGB 이미지	JPG	
2	수집				
		원시 데이터	2D NIR 이미지	JPG	
3			3D LiDAR 이미지	PCD	PCD: Point Cloud Data 점군데이터의 집합
4	정제	원천 데이터	"상동"	"상동"	"상동"
5	가공	데이터셋	라벨링 데이터	json	

(1) 데이터 수집 장비

- 측정 장비는 대동의 140HP급 트랙터에 데이터 수집장치 및 센서류를 장착하여 구성
- 측정 장치는 GPS/IMU 및 카메라, LiDAR, NIR 센서 등으로 구성하였음
- 측정 장치는 다양한 종류의 농기계 장착위치를 모사하여 높이별로 3개 포인트에 부착하였음

1	항목	적용	모델
	89	HX1300ATSC	HX1400ATSC
	1. 전장(A1)	4,887	-
	2. 전장 (A2)	4,439	-
O	3. 전륙(B)	2,267	-
	4 원고(C)	3,011	-
	5. 47(D)	2,600	-
14	6. 윤거(E1)	1,854	-
-11	7. 备거(E2)	1,800	-
	8. 최저지상고(F)	496	-

<트랙터 제원 및 센서 장착 위치>

센서	모델명	사양		
면서		184-channel u-blox F9 engine		
GPS/IMU	ublox F9K	Position accuracy RTK <0.2m + 1ppm CEP		
2D-RGB	FLIR	최대 해상도 : 2048x1536 35 fps		
카메라	BFS-PGE-31S 4C-C	240MB Frame buffer, 6 MB non-volatile memory flash		
NIR	FLIR	최대 해상도 : 2048x1536 35 fps		
카메라	BFS-PGE-31S 4M-C	240MB Frame buffer, 6 MB non-volatile memory flash		
LiDAR	Ouster	Channel: 32		
LIDAK	OS1-32	Range(@80%Reflectivity): 120m		
		센서 데이터 레코딩 지원		
수집 SW	RTMaps	각종 센서, 네트워크버스, 이미지 및 데이터 처리를 위한 컴포넌트 라이브러리 제공		
DAQ	Brick Plus	Intel Core i7-5700EQ (4x2, 6GHz)		
DAQ	DIICK PIUS	16GB RAM		

표 15 센서 및 수집장치 사양

(2) 수집 대상 객체 정의

- 논, 밭, 과수원, 공통으로 총 18개의 객체를 분류
- 기본적인 농로, 진입로, 작업지를 기준으로해서 자율주행시 장애물 혹은 기준점으로 인식이 필요한 논두렁, 작물, 고랑 등을 객체로 분류하여 폴리곤, 박스등 적절한 라벨링 방식을 선정하여 정제를 할 수 있도록 하였음

순번	ID	클래스	객체명	라벨명	원천 데이터	라벨링 <mark>방식</mark>	구분	촬영장소
1	1_1	논	경운전	paddy_before_driving	RGB, NIR	폴리곤 세그멘테이션	주행가능영역	필드내/외
2	1_2	논	경운후	paddy_after_driving	RGB, NIR	폴리곤 세그멘테이션	주행가능영역	필드내/외
3	1_3	논	물논	paddy_water	RGB, NIR	폴리곤 세그멘테이션	주행가능영역	필드내/외
4	1_4	논	논두렁	paddy_edge	RGB, NIR	폴리곤 세그멘테이션	주행불가능영역	필드내/외
5	1_5	논	작물(벼)	paddy_rice	RGB, NIR	폴리곤 세그멘테이션	주행불가능영역	필드외
6	2_1	밭	고랑	field_furrow	RGB, NIR	폴리곤 세그멘테이션	주행가능영역	필드내/외
7	2_2	밭	두둑	field_levee	RGB, NIR	폴리곤 세그멘테이션	주행불가능영역	필드내/외
8	2_3	밭	작물(밭)	field_corps	RGB, NIR	폴리곤 세그멘테이션	주행불가능영역	필드외
9	3_1	과수원	농로	orchard_road	RGB, NIR	폴리곤 세그멘테이션	주행가능영역	필드내/외
10	3_2	과수원	과수	orchard_tree	RGB, NIR	폴리곤 세그멘테이션	주행불가능영역	필드내/외
11	4_1	공통	농로	common_road	RGB, NIR	폴리곤 세그멘테이션	주행가능영역	필드내/외
12	4_2	공통	베일	common_vail	RGB, NIR, LIDAR	바운딩박스	정적위험개체	필드내/외
13	4_3	공통	차량	common_vehicle	RGB, NIR, LIDAR	바운딩박스	동적위험개체	필드내/외
14	4_4	공통	농기계	common_tractor	RGB, NIR, LIDAR	바운딩박스	동적위험개체	필드내/외
15	4_5	공통	돌	common_rocks	RGB, NIR, LIDAR	바운딩박스	정적위험개체	필드내/외
16	4_6	공통	나무	coommon_tree	RGB, NIR	폴리곤 세그멘테이션	정적위험개체	필드내/외
17	4.7	공통	사람	common_person	RGB, NIR, LIDAR	바운딩박스	동적위험개체	필드내/외
18	4_8	공통	전봇대	common_pole	RGB, NIR, LIDAR	바운딩박스	정적위험개체	필드내/외

그림 9 촬영 장소 별 특성을 고려한 객체 정의

2.3.2 수집·정제 절차

- (1) 지정된 장소에서 농기계(트랙터)를 과제 인력 및 크라우드소싱 인력을 통하여 GPS/IMU, 카메라(주행영상, 2D RGB, NIR), 라이다의 원시 데이터를 획득
- GPS/IMU : GPS 시각 동기화 수집 SW -> DAQ -> 수집서버 저장
- 라이다 : GPS 시각 동기화 수집 SW -> DAQ -> 수집서버 저장
- 카메라 : GPS 시각 동기화 수집 SW -> DAQ -> 수집서버 저장

순 번	데이터 획득 형태	수집장비	데이터 형식	수집처(장소)	담당 인원
1	작업지 진입로 및 작업지 내부	GPS/IMU 고정밀 측위 장비	CSV, TXT	1. 현장 DAQ 2. 수집 서버	과제 인력 및 크라우드소싱 인력
2	작업지 진입로 및 작업지 내부	라이다	PCD	1. 현장 DAQ 2. 수집 서버	과제 인력 및 크라우드소싱 인력
3	작업지 진입로 및 작업지 내부	360° 카메라, 2D RGB 카메라, NIR 카메라	JPG, MP4	1. 현장 DAQ 2. 수집 서버	과제 인력 및 크라우드소싱 인력

<데이터 획득 절차>

(2) 데이터 획득 절차 수립

- 자율주행 인공지능 데이터 획득을 위하여 기보유 장비를 활용
- 원시데이터 획득을 위한 장소, 농기계, 주행시간, 주행조건 등을 수립
- 해당 지역의 원시데이터 획득을 위한 작업 직행
- 일일 현장서 획득된 원시데이터는 현장 DAQ, 수집서버에 저장하고 주행일지를 작성하여 일일 업무보고서를 데이터 수집관리자에게 제출
- 원시데이터는 데이터 획득 기준에 준하는지 분석
- 데이터 수집관리자는 원시데이터의 분석결과를 토대로 품질평가

(3) 데이터 획득 항목 정의

○ GPS/IMU 데이터 항목 정의

순번	속성명	항목 설명	필수 여부	예시
1	PosLat(deg)	GPS로 획득한 위도	Υ	36.49873671
2	PosLon(deg)	GPS로 획득한 경도	Υ	127.32524632
3	PosAlt(m)	GPS로 획득한 고도	Υ	58.172
4	time(s)	GPS로 획득한 시간	Υ	1288685575.74
5	AngleHeading(Deg)	트랙터의 Heading 각도	Υ	70.398
6	AnglePitch(deg)	트랙터의 Pitch 각도	Υ	0.202
7	AngleRoll(deg)	트랙터의 Roll 각도	Y	1.573

○ 라이다 데이터 항목 정의

순번	속성명	항목 설명	필수 여부	예시
1	distance	라이다로 측정된 거리	Y	52.1523
2	rot.angle	라이다로 측정된 각도	Y	-12.215
3	time	라이다로 측정된 시간	Y	1.27E+08

○ 카메라 데이터 항목 정의

순번	속성명	항목 설명	필수 여부	예시
1	video	촬영 영상	Y	Test.mp4
2	image	촬영 이미지	Y	Testlmage.jpg

- 획득 데이터 저장 및 관리
 - 농기계에 장착된 센서로부터 획득한 위치/자세 데이터, 영상, 이미지 데이터, 라이다 데이터 는 현장 DAQ, 수집서버로 백업 진행
 - 메모리 용량 부족, DAQ 이상 발생 시 추가 메모리와 수집 노트북을 여유분을 확보하여 주 기적인 백업 및 관리
 - 획득된 원시 데이터 관리를 위해 주행일지와 주행 환경별 폴더 형태로 구성하여 원시데이터 저장(수집서버)
- 장비로부터 시계열로 동기화되어 생성된 원시데이터는 5단계로 구성된 이미지 정제 절차에 따라 라벨링을 위한 워천데이터를 생성

다게	LIIO
단계	내용
이미지 확인	- 숙련된 검수자의 이미지를 확인
이미지 흔들림·초점 확인	- 이미지가 흔들리지 않았는지, 초점이 맞았는지 확인
촬영 상황 및 방식 준수	- 이미지가 규정된 촬영 조건과 촬영방식을 준수하였는지 확인
환경정보 확인	- 수집자가 입력한 영상의 촬영 정보 확인
	- 2명의 검수자가 참여하여 상기 과정으로 검수를 진행하고 검
다수결 원칙 적용	수자 간 의견이 다를 경우, 제3의 검수자를 투입하여 다수 의
	견으로 이미지 사용 여부 판정

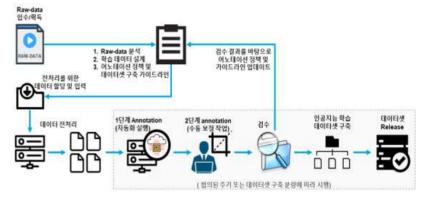
2.3.3 수집·정제 기준

- 데이터 중복으로 인한 편향 학습을 방지하기 위하여 동일한 형태의 데이터가 반복적으로 나타 나는 경우 이를 제거
- 불필요하거나 의미 없는 데이터인 농작지 촬영 전 또는 촬영 후에 생길 수 있는 프레임을 제 거하여 영상 데이터를 적정한 규모로 유지하여 부석에 이용

	를 작성한 #포도 뉴시아어 문역에 '							
방법		내용						
	- 동일한 사진부터 유사한 사진까지 분류하여 불필요하거나 의미 없는 데							
	이터, 반복적으로 나타나는 동일한 형태의 데이터 제거							
	No. of the last of							
	기준 이미지	유사, 중복 이미지 예시						
	<이미지 정제 데이터의 -	유사 및 중복 예시 - 2D RGB>						
분류 및 구별								
	71.5 010171							
	기준 이미지	유사, 중복 이미지 예시						
	<이미지 정제 데이터의 유/	사 및 중복 예시 - 2D NIR>						
	The Marie Control							
	21							
		71-1						
	기준 이미지	유사, 중복 이미지 예시						
		사 및 중복 예시 - 3D LiDAR>						
	· · · · · · · · · · · · · · · · · · ·	시 大 oi 에시 - 3D LIDAR2						
	l .							

2.3.4 수집·정제 도구

- (1) 이미지 데이터 정제 도구
- 영상 프레임 이미지 데이터 추출 도구
- 무료 오픈소스 프리웨어인 'Free Video to JPG Converter' 활용. 해당 소프트웨어는 여러 개의 동영상 파일로부터 프레임 이미지 데이터를 연속적으로 추출할 수 있어서 업무 생산성이 매우 높음. 사용자 요구 사항에 따라 시간 단위, 프레임 단위 자유롭게 추출할 수 있음


<이미지 데이터 추출 도구 >

- (2) 이미지 비식별화 정제도구
- 원시 데이터 수집 과정에서 의도하지 않은 개인정보가 수집될 수 있고 이는 차후 공개 데이터 로 사용할 때 초상권이나 기태 개인의 권리를 침해하는 법적 분쟁 소지가 있어서 비식별화 기 술을 활용하여 데이터 사용자 및 개인의 권리를 보호하고 법적 분쟁을 미연에 방지

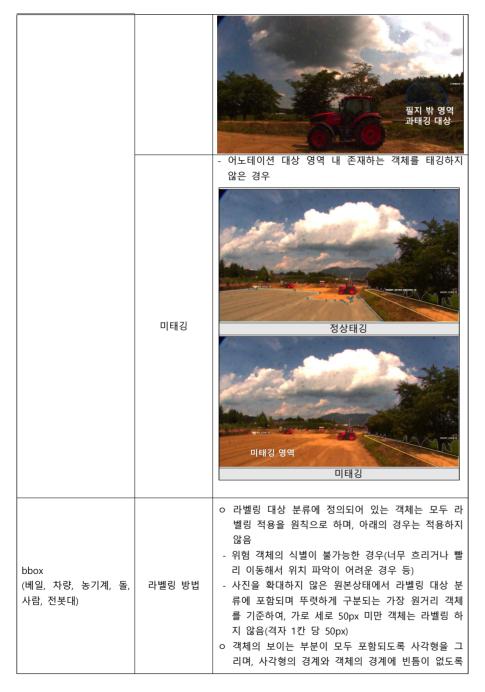
2.4 어노테이션/라벨링

- 2.4.1 어노테이션/라벨링 절차
- 데이터 라벨링 절차
 - 체계화된 프로세스를 통해 높은 정확도의 가공 작업 수행
 - 자체 인공지능 학습 데이터셋 가공 및 저작도구인 "blackolive"의 자동화 기능을 활용하여 1 단계 어노테이션 작업 수행

<데이터 가공 및 구축 프로세스>

- 크라우드소싱으로 작업자를 모집하고 SaaS기반 작업 환경에서 2단계 어노테이션 및 보정 작업을 수행하며 데이터의 정확성과 품질을 높임
- 2단계 어노테이션 과정에서는 데이터 가공 자동화 단계에서 탐지하지 못했거나, 라벨링 및 태깅 오류가 있는 객체들의 보정 작업을 수행
- 고품질의 데이터셋 구축을 위해 객체별 라벨링 가이드라인을 제작하여 준수하고, 3단계에 걸친 검수 작업을 통해 원천 데이터의 의도하지 않은 오류를 추가 검출

순서	가공 도구	내용	단계별 목표
1단계	작업자 간 검수	- 라벨링 작업 시작 전 원천데이터의 오류 여부 확인 - 라벨링 작업 수행	95%
2단계	관리자 검수	- 작업이 완료된 Task를 재분배하여 검수 진행 - 작업자 간 검수가 완료된 Task를 육안으로 확인 - 가이드라인 미 준수 또는 오류가 발생한 산출물 은 오류 작업지시를 포함하여 재 할당	98%
3단계	최종 검수	- 관리자 검수가 종료된 작업물은 최종검수를 진 행하여, 최종 데이터 셋 형태로 저장(형상관리)	99%


- 라벨링 대상 분류
 - 농작지의 성격에 따라 영역과 위험예상 객체를 분류
 - 주행에 영향을 미치는 정적·동적 위험 객체는 2D/3D 바운딩박스(Cuboid) 라벨링
 - 농기계가 주행할 수 있는 영역과 불가능영역을 구분하기 위해 폴리곤 세그멘테이션 라벨링

클래스	객체명	객체 구분	라벨링 방식	설명				
	경운 전	주행가능영역	polygon	작업지 색으로 구분				
	경운 후	주행가능영역	polygon	작업지 색으로 구분				
논	물논	주행가능영역	polygon	작업지 색으로 구분				
	논두렁	주행불가능영역	polygon	농작지의 경계(용수로 포함)				
	작물(벼)	주행불가능영역	polygon	농로에서 작업지에 있는 작물 인식, 수확이 끝난 논에서 수확이 안된 논을 바라보거나, 농로에서 바라보는 벼의 모습 촬영				
	고랑	주행가능영역	polygon	이랑과 이랑 사이 작업 가능 경로				
밭	두둑	주행불가능 영역	polygon	작업지내 불룩하게 흙을 쌓은 영역				
	작물(밭)	주행불가능 영역	polygon	농로에서 작업지에 있는 작물 인식				
과수원 -	농로	주행가능영역	polygon	작업지까지 주행경로				
刊十四	과수	정적 위험객체	polygon	주행경로 좌우 과수				
	농로	주행가능영역	polygon	작업지까지 주행경로				
	베일	정적 위험객체	bbox, cuboid	수확이 완료된 볏짚의 더미				
	차량	동적 위험객체	bbox, cuboid	농로 또는 작업지의 위험객체(승용차, 트럭 등)				
	농기계	동적 위험객체	bbox, cuboid	농로 또는 작업지의 위험 객체(농기계)				
공통	돌	정적 위험객체	bbox, cuboid	작업지 내 주행에 방해되는 특정 크기 이상의 돌 또는 바위				
	나무	정적 위험객체	bbox, cuboid	작업지 내 주행에 주행에 방해되는 나무(과수 제외)				
	사람	동적 위험객체	bbox, cuboid	농로 또는 작업지의 위험객체(남녀노소 구분 없음)				
	전봇대	정적 위험객체	bbox, cuboid	농로의 위험객체				

2.4.2 어노테이션/라벨링 기준

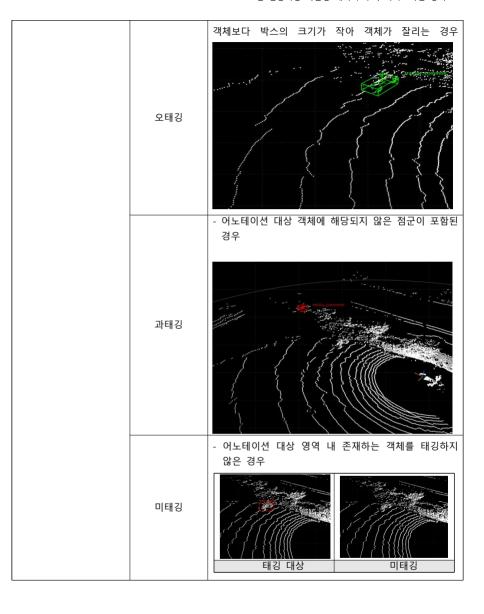
- 라벨링 작업 가이드라인
 - 라벨링 기능 별로 작업 가이드라인을 구축하여 일관된 기준의 학습 데이터셋 구축

클래스명	검수 기준	기준 설명
polygon (경운 전, 경운 후, 물논, 논두렁, 작물, 고랑, 두둑,	라벨링 방법	○ 라벨링 대상 분류에 정의되어 있는 영역을 모두 라벨링 적용을 원칙으로 하며, 아래의 경우는 적용하지 않음 - 작업지를 벗어나는 영역은 라벨링 하지 않음 ○ 노면의 가시 면적에 대해 작업을 하며, 노면의 외곽선을 기준으로 10px 내외로 그려야 함 - 영역 잘림 현상이 발생한 경우 잘림 현상이 발생한면까지 포함하여 작업(전체 영역의 10% 이하는 미수행)
작물, 농로, 과수, 나무) -	오태깅	- 태깅 영역의 경계가 객체 영역보다 10px 이상 더 크 게 쳐져있거나 10px 이하로 더 작게 쳐져 있는 경우
	과태깅	- 어노테이션 대상 작업지를 벗어나는 영역을 어노테이 션 한 경우

그리는 것을 원칙으로 함(최소 10px내외)

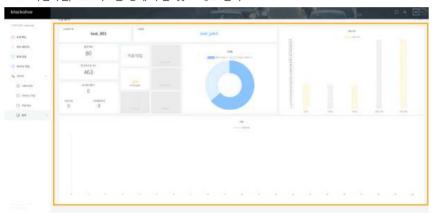
- 해당 객체가 다른 객체에 의해 겹쳐 촬영된 때에는 객체의 온전한 모양을 추정하여 사각형을 그려야 함.
- 해당 객체가 군집을 이루고 있을 경우, 객체 하나씩 모두 사각형을 그려야 함.
- 객체끼리 겹치거나 화각으로 인해 객체가 잘려서 부분만 촬영된 현상을 '가림 현상'이라 함. 이 객체는 온전한 모양을 추정하여 사각형을 그려야 하고, '가림'을 표시해 주어야 함. 객체가 잘려 온전한 모양을 추정할 수 없는 경우 객체가 잘려진 사진의 가장자리까지 사각형을 그린 후 '가림'을 표시해주어야 함. (객체의 25% 이하는 미 수행)

- 객체보다 박스의 크기가 작아 객체가 잘리는 경우



오태깅

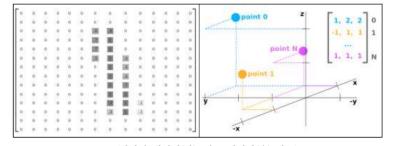
- 박스의 크기가 객체 영역보다 10px 이상 더 크게 쳐 져있는 경우



		- 어노테이션 대상 영역 내에서 50px 미만 크기의 객체 를 어노테이션 한 경우
	과태깅	100px 100px 100px 과태강 과태강
	미태강	- 어노테이션 대상 영역 내 존재하는 객체를 태깅하지 않은 경우
Cuboid (베일, 차량, 농기계, 돌, 사람, 전봇대)	라벨링 방법	 3D 바운딩 박스 라벨링 대상 분류에 정의되어 있는 객체는 모두 어노테이션 적용을 원칙으로 하며, 아래의 경우는 적용하지 않음 위험 객체의 식별이 불가능한 경우(점군의 형태가 완전하지 않은 경우) 객체의 보이는 부분이 모두 포함되도록 육면체를 그리며, 육면체의 경계와 객체로 추정되는 점이 모두 포함되도록 작업하는 것을 원칙
		Section 1 and 1 an

243 어노테이션/라벨링 도구

- 데이터 가공 자동화 도구
 - 객체 인식 및 자동 가공 기능을 활용하여 가공의 효율성을 확보
 - Faster-RCNN등 객체인식 모델을 활용하여 바운딩 박스 및 폴리곤 가공 자동화
- 데이터 가공 관리 도구
 - 효율적인 일정 및 진척율, 품질 관리를 위해 아래 기능을 포함하고 있는 웹 기반의 관리 도 구 확용
 - 업무 분배, 프로젝트 및 작업자 관리, 검수 프로세스 관리 과정 모니터링
 - 게시판을 통한 작업자, 검수자, 관리자 간 이슈 공유 및 내용 추적
 - 작업자와 검수자는 할당받은 모든 작업물을 리스트 형식으로 모니터링
 - 작업의 진행률, 반려율, 검수 현황을 대시보드를 통해 확인
 - 검수 요청 현황 확인, 검수자 및 작업자 변경, 작업물 다운로드 기능 등
 - 작업자별, 프로젝트별 통계 추출 및 그래프 출력



<데이터셋 가공 관리도구 예시>

- 데이터 라벨링 도구
 - 2D RGB, NIR 이미지의 가공을 위한 데이터 라벨링 도구 선정
 - 정밀 농기계의 농지 주행영역 식별을 위해 폴리곤 가공을 이용하여 주행 가능 및 불가능 영역을 식별하며, 농지 내 위험 객체 분류는 2D 바운딩 박스 기능을 이용하여 라벨링 작업 수행

종류	가공 도구	비고
2D 바운딩 박스		blackolive
	<2D 바운딩 박스 가공도구 예시>	
폴리곤	AND THE TOTAL PROPERTY.	blackolive
	<폴리곤 가공도구 예시>	

- LiDAR 데이터 셋 구축을 위한 3D 바운딩 박스 라벨링 도구 요구사항
 - LiDAR를 통해 취득한 원시데이터(점군 데이터)는 일반 이미지(JPG, PNG)와 다르게 3축 좌 표와 (X,Y,Z) 원점과 거리 정보(intensity, rgb색으로 표현됨)의 데이터 프레임으로 구성되어 있으며, LiDAR의 해상도가 높을수록 데이터량이 늘어남

<이미지 데이터(좌), 점군 데이터(우) 비교>

- 원천데이터의 용량이 LiDAR의 해상도에 비례하여 크기 때문에, 이미지 가공 툴과 같이 웹 기반의 툴을 사용할 경우 네트워크 환경과 컴퓨팅 파워가 작업 속도에 영향을 미침 # .PCD v.7 - Point Cloud Data file format VERSION .7 FIELDS x v z rab //좌표와 색상을 구분 SIZE 4 4 4 4 TYPE F F F F COUNT 1 1 1 1 WIDTH 213 HEIGHT 1 VIEWPOINT 0 0 0 1 0 0 0 POINTS 213 DATA ascii //라이다의 해상도가 높아지면 데이터의 량이 늘어남 0.93773 0.33763 0 4.2108e+06 0.90805 0.35641 0 4.2108e+06 0.81915 0.32 0 4.2108e+06 0.97192 0.278 0.4.2108e+06 0.944 0.29474 0 4.2108e+06

〈PCD 파일 포맷〉

- 점군데이터는 작업자가 정제 또는 라벨링 작업 시, 육안으로 객체의 유무, 분류 판단이 어렵기 때문에, 다양한 멀티 뷰 기능과 카메라 이미지와의 시계열 동기화를 통한 병렬 가공작업이 필수 요소임

2.5 검수

2.5.1 검수 절차

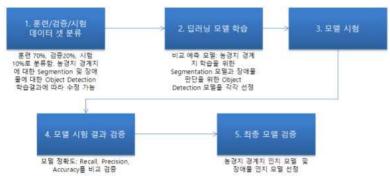
- 전수 검수를 기본 원칙으로 하여 데이터 품질을 확보
- 가공된 작업물을 임의의 작업자에게 할당하는 방식의 검수를 통한 데이터 오류 검사
- 가공된 데이터의 품질을 관리하는 품질 관리자 지정/배치, 재교육 및 가이드라인 수정
- 검수 절차에서 반려된 데이터는 해당 정제/가공기관으로 전달 후 수정 또는 삭제 처리
- 재전달 받은 가공데이터는 재작업 후 구축 가이드라인 효율화 및 수정에 반려 데이터 활용
- 최종적으로 TTA와의 협업을 통해 데이터 검증 절차를 진행

2.5.2 검수 기준

○ 검수 절차 및 요구사항

데이터 분류	검수 기준	기준 설명
Polygon	오태깅	- 태깅 영역의 경계가 객체 영역보다 10px 이상 더 크게 쳐져있거나 10px 이하로 더 작게 쳐져 있는 경우
(경운 전/후, 물논, 논두렁, 작물, 고랑, 두둑, 농로, 과수, 나무)	과태깅	- 어노테이션 대상 작업지를 벗어나는 영역을 어노테이션 한 경우
6 <u>포</u> , 피구, 디구)	미태깅	- 어노테이션 대상 영역 내 존재하는 객체를 태깅하지 않은 경우
	오태깅	- 객체보다 박스의 크기가 작아 객체가 잘리는 경우 - 박스의 크기가 객체 영역보다 10px 이상 더 크게 쳐져있는 경우
Bbox (베일, 차량, 농기계, 돌, 사람, 전봇대)	과태깅	- 어노테이션 대상 영역 내에서 50px 미만 크기의 객체를 어노테이션 한 경우
	미태깅	- 어노테이션 대상 영역 내 존재하는 객체를 태깅하지 않은 경우
Cuboid	오태깅	- 객체보다 박스의 크기가 작아 객체가 잘리는 경우
(베일, 차량, 농기계, 돌, 사람, 전봇대)	과태깅	- 어노테이션 대상 객체에 해당되지 않은 점군이 포함된 경우
	미태깅	- 어노테이션 대상 영역 내 존재하는 객체를 태깅하지 않은 경우

2.5.3 검수 조직

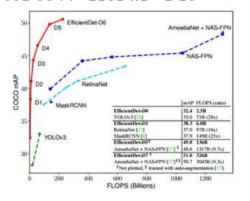

- 데이터 획득 검사팀, 데이터 정제 검사팀, 데이터 라벨링 검사팀, 데이터 전수 검사팀, 데이터 요청자 등으로 구성
- 농축수산 및 자율주행 분야의 도메인 전문가, 데이터 요청자, 외부 업체를 통한 검사

2.6 활용

261 확용 모델

2.6.1.1 모델 학습

○ 인공지능 학습 모델 선정 절차


<인공지능 학습 모델 개발 프로세스>

- 농경지 인식 모델 선정
 - 농경지 인식 모델은 2D-RGB, NIR(적외선) 영상을 이용함. 모델링 목적은 자율주행에서 주행 가능지역과 주행 불가능지역의 경계를 인식하는 것을 목적으로 하는 모델임
 - 농경지 인식 모델은 Segmentaion 개념을 기반으로 찰영 영상의 영역을 판단하는 것을 목적으로 함
- 농경지에서의 장애물 인식 모델 선정
 - 농작지에서의 장애물 인식 모델은 2D-RGB, NIR(적외선) 영상, Lidar영상을 통한 Point-Cloud 데이터를 이용하여 자율주행시의 장애물을 인지하는 것을 목적으로 함.
 - 농작지에서의 장애물 인식 모델 Object Detection 및 Classification을 통해서 주행 중 회피를 위한 장애물을 인식하는 것을 목적으로 함.
- 인공지능 학습 모델 선정 기준
 - 성능:'인공지능 데이터 활용 모델 개발'참조
 - Computational efficiency 비교하여 최적의 연산량을 고려하여 모델 선정
 - 병렬처리를 위한 최적의 파티션 크기, 메모리 사용량, 멀티-코어 프로세서의 성능 분석을 통한 모델 선정

Model	Input Size	scanysec	#Params	#MACs	MoU	car	bicycle	motorcycle	truck	other-vehicle	person
PointNet [27]					14.6	46.3	1.3	0.3	0.1	0.8	0.2
PointNet++ [28]					20.1	53.7	1.9	0.2	0.9	0.2	0.9
SPGraph [17]	500000				20.0	68,3	0.9	4.5	0.9	0.8	1.0
SPLATNet [35]	50000pts		85	1.0	22.8	66.6	0.0	0.0	0.0	0.0	0.0
TangentConv [37]	1				35.9	86.8	1.3	12.7	11.6	10.2	17.1
RandLA [12]					53.9	94.2	26.0	25.8	40.1	38.9	49.2
KPConv [39]					58.8	96.0	30.2	42.5	33.4	44.3	61.5
SqueezeSeg [40]	64 × 2048 px	84.7	han the	(0) (5 m)	29.5	68.8	16.0	4.1	3.3	3.6	12.9
SqueezeSegV2 [41]		55.8	928,5 K	13.6 G	39.7	81.8	18.5	17.9	13.4	14.0	20.1
RangeNet21 [23]	64 × 2048 px	21.7	- 33	0.50	47.4	85.4	26.2	26.5	18.6	15.6	31.8
RangeNet53++	64 × 512 px	38.5			41.9	87.4	9.9	12.4	19.6	7.9	18.1
RangeNet53++	64 × 1024 px	23.3	83	1,60	48.0	90.3	20.6	27.1	25.2	17.6	29.6
RangeNet53	64 × 2048 px	13.3	50.4 M	377.1 G	49.9	86.4	24.5	32.7	25.5	22.6	36.2
RangeNet53++	64 × 2048 px	12.8			52.2	91.4	25.7	34.4	25.7	23.0	38.3
PolarNet [44]	480 × 360 × 32	6.7	13.6 M	135.0 G	54.3	93.8	40.3	30.1	22.9	28.5	43.2
MPF (ours)	64 × 512 px	33.7	27		48.9	91.1	22.0	19.7	18.8	16.5	30.0
MPF (ours)	64 × 1024 px	28.5	83	1,65	53.6	92.7	28.2	30.5	26.9	25.2	42.5
MPF (ours)	64 × 2048 px	20.6	3.18 M	27.0 G	55.5	93.4	30.2	38.3	26.1	28.5	48.1

<AI 학습을 위한 모델 비교>

- 고효율, 고인식률의 딥러닝 모델 선정: 복합 스케일링(compound scaling) 기법을 이용하여 효율적으로 성능을 향상시키고 연산량은 낮은 모델 선정

< Model FLOPS vs Accuracy >

○ 학습 모델 개발

- 인공지능 학습 모델 선정 절차와 (2) 인공지능 학습 모델 선정 기준에 따라 농기계 자율주행을 위한 농작지 인식 모델과 농기계 자율주행을 위한 위험물 인식 모델을 개발함

1) 농기계 자율주행을 위한 농작지 인식 모델

- 경작지 자율주행을 위한 경계선 및 경작지 인식이 가능한 농기계 자율주행을 위한 농작지 인식 모델은 Semantic Segmentation을 평가하여 성능이 더 나은 Segformer를 선정함
- 학습데이터 구성 비율은 학습:검증:평가=7:1:2
- 농기계 자율주행을 위한 농작지 인식 모델 중 RGB 목표 80% 이상, NIR 목표 80% 이상
- 유효성검증 지표는 mIOU, IoU = Overlapping Region / Combined Region

- 학습화경
 - Linux (OS: Ubuntu)
 - GPU
 - Python
 - PvTorch
 - MMCV
 - MMSEGMENTATION
- 학습방법
 - 데이터 전처리: 기존 mscoco형식의 json파일을 Pascal VOC dataset의 Annotation 형식인 ground truth 영상으로 변화함
 - 데이터 학습: MMSegmentation 이용하여 농경지 데이터셋 학습

2) 농기계 자율주행을 위한 위험물 인식 모델

- 자율주행을 위한 농작지에서의 객체 및 장애물 추정이 가능한 농기계 자율주행을 위한 위험물인식 모델은 바운딩박스 객체 인식을 평가하여 성능이 나은 Darknet YOLOv4를 활용하여 검출모델을 선정함
- 학습데이터 구성 비율은 학습:검증:평가=7:1:2
- 농기계 자율주행을 위한 위험물 인식 모델 중 RGB 목표 80% 이상, NIR 목표 80% 이상
- 유효성검증 지표는 mAP.
- AP = area under Precision-Recall curve
 - Precision = {TP} / {TP+FP}
 - Recall = {TP} / {TP+FN}
 - TP: IoU 0.5 이상이며, 클래스 정답
 - FP: 클래스 오답 또는 IoU 0.5 미만(오태깅)이거나 대상이 아닌 객체 검출
 - FN: 객체 검출 대상이지만 인식하지 못함
- o 학습화경·
 - Linux (OS: Ubuntu)
 - GPU
 - darknet yolov4
- 학습방법
 - 데이터 전처리: 기존 COCO dataset의 Annotation 형식을 YOLOv4 모델에서 사용할 수 있는 형식으로 변화함
 - 데이터 학습: Darknet 바이너리 이용하여 농경지 장애물 데이터셋 학습

2.6.1.2 서비스 활용 시나리오

- 정형화된 정밀농업 농기계 자율주행 이미지 활보 및 학습 데이터 구축
 - 도로와 토양의 상태와 지형, 작물등 주변 환경조건을 인식해 최적의 경로를 파악하고 자율적인 도로 및 경작지내에서 주행이 가능한 인공지능 학습을 위한 데이터 구축
- 농작지, 위험물 데이터 기반 통계자료 작성 및 가시화
 - 농기계가 농작지와 위험물을 인식하여 자율주행 가능하도록 하는 기초 자료로 활용 가능
- 농작지 위험물 감지 후 자율주행 회피 거동 서비스 개발
- 농작지 위험물 감지 정보를 바탕으로 위험물 회피를 위한 경로 재생성 알고리즘 개발

2.6.2 데이터 제공

- Al Hub를 통한 개방데이터 제공 절차에 따른 데이터 제공 (https://aihub.or.kr/)

드론 농경작지 촬영 영상 소개

데이터 변경이력

<Al Hub 개방데이터 예시>